Math Curriculum Map

This map details the skills and understandings that students will develop through their work across the 9 units. The chart guides teachers to see which skills are explored in each unit. You will notice that many skills are developed over several units and that others come back in later units. This spiraling is designed to support student retention and transference of fundamental content. You will also notice that that there is generally an overlap from one unit to the next. This is to reinforce and build off of prior understandings.

DESCRIPTION	$\begin{gathered} \text { UNIT } \\ 1 \end{gathered}$	$\begin{gathered} \text { UNIT } \\ 2 \end{gathered}$	$\begin{gathered} \text { UNIT } \\ 3 \end{gathered}$	$\begin{gathered} \text { UNIT } \\ 4 \end{gathered}$	$\begin{gathered} \text { UNIT } \\ 5 \end{gathered}$	$\begin{gathered} \text { UNIT } \\ 6 \end{gathered}$	$\begin{gathered} \text { UNIT } \\ 7 \end{gathered}$	$\begin{aligned} & \text { UNIT } \\ & 8^{*} \end{aligned}$	$\begin{gathered} \text { UNIT } \\ 9 \end{gathered}$
Understanding that for each input in a function, there can be only one output.									
Using a one or two-operation rule to complete an In/Out function table.									
Given a rule, determining an output from an input and vice versa.									
Identifying a one-operation rule that fits a given table of In/Out values									
Identifying a two-operation rule that fits a given table of In/Out values									
Understanding that a function rule must fit all the In/Out values in the table for that function									
Creating function rules in abstract context and using them to complete an In/Out function table.									
Creating, reading, and interpreting tables									
Creating tables from one- and two-operation rules									
Plotting points in a one-quadrant graph									
Relating tables to linear graphs									
Relating tables to nonlinear graphs									
Drawing inferences and conclusions based on graphed data									
Interpreting points on a graph in real-world contexts									
Using graphs to fill out tables and create function rules									
Testing whether an ordered pair fits a function, using the rule or the graph									
Discovering the relationship between rate of change, starting amount, and function rules.									

DESCRIPTION	$\begin{aligned} & \text { UNIT } \\ & 1 \end{aligned}$	$\begin{gathered} \text { UNIT } \\ 2 \end{gathered}$	$\begin{gathered} \text { UNIT } \\ 3 \end{gathered}$	$\begin{gathered} \text { UNIT } \\ 4 \end{gathered}$	$\begin{gathered} \text { UNIT } \\ 5 \end{gathered}$	$\begin{gathered} \text { UNIT } \\ 6 \end{gathered}$	$\begin{gathered} \text { UNIT } \\ 7 \end{gathered}$	$\begin{aligned} & \text { UNIT } \\ & 8^{*} \end{aligned}$	$\begin{gathered} \text { UNIT } \\ 9 \end{gathered}$
Using rate of change and starting amount to determine function rules from tables.									
Determining rate of change, starting amount, and function rules for contextualized problems.									
Working with fractional rates of change									
Creating function rules that describe real-world situations or visual patterns									
Writing systems of equations in two variables									
Using tables and graphs to compare two linear functions									
Understanding the significance of the point on the graph where two lines intersect									
Using tables, graphs, and guess \& check to find solutions to systems of linear functions									
Seeing applications of systems of equations in science and social studies contexts									
Using systems of equations to make and justify choices									
Interpreting systems of equations as a means of negotiation between competing interests									
Interpreting variables in function rules describing real-world contexts									
Translating to formal function notation									
Interpreting function rules that describe real-world situations									
Using charts, tables, drawings and graphs to analyze nonlinear change									
Graphing quadratic functions and relating them to function tables									
Generating outputs from a rule written in function notation									
Understanding constraints on the domain (possible inputs) of a function given a particular context									
Seeing and recognizing the difference between the graphs of quadratic and cubic functions									
Applying quadratic function rules in specific problem-solving contexts									
Using tables, charts, and drawings to model exponential growth and decay									
Seeing exponential growth/decay models in word problems									
Distinguishing between situations that can be modeled with linear and exponential functions									

DESCRIPTION	$\begin{gathered} \text { UNIT } \\ 1 \end{gathered}$	$\overline{2}$	$\begin{gathered} \text { UNIT } \\ 3 \end{gathered}$	$\begin{gathered} \text { UNIT } \\ 4 \end{gathered}$	$\begin{gathered} \text { UNIT } \\ 5 \end{gathered}$	$\begin{gathered} \text { UNIT } \\ 6 \end{gathered}$	$\begin{gathered} \text { UNIT } \\ 7 \end{gathered}$	$\begin{aligned} & \text { UNIT } \\ & 8^{*} \end{aligned}$	$\begin{gathered} \text { UNIT } \\ 9 \end{gathered}$
Observing that a quantity increasing exponentially will eventually exceed a quantity increasing linearly or as a polynomial function									
Noticing that, in exponential functions, the variable is in the exponent position, and interpreting equations accordingly									
Developing fluency with the different properties of equality									
Creating equations with two or more variables to represent relationships between quantities									
Identifying patterns and observing change									
Using patterns to make predictions and generalizations									
Collecting data in a table									
Developing strategies to move from concrete to abstract models									
Finding recursive and explicit rules									
Creating a written description to define a linear function relationship									
Understanding the use of a variable in the context of a function with two unknowns, (asopposed to solving for a specific value of the variable)									
Solving one-variable equations with one or twooperations (finding the input when given the output of a known function rule)									
Connecting pattern exploration and algebra									
Understanding multiplication as repeated addition									
Develop a better sense of numbers, especially to compose, decompose and factor integers									
Understand the connection between the multiplication of integers and the multiplication of polynomials									
Understanding and using the commutative and distributive properties of multiplication									
Calculating area and perimeter of rectangles									
Multiplying two-digit numbers									
Multiplying binomials and trinomials (polynomials)									
Understanding that two binomials are factors of a single trinomial									
Combining like terms									

* The student objectives for the lessons in Unit 8: Algebraic Reasoning through Visual Patterns are included in the chart above. The introduction to Unit 8 also describes a wide range of other math content you can teach through visual patterns, seen below. Using visual patterns to draw out the content below holds further potential for reinforcement and deepening the concepts listed above.

```
\square organizing data (tables and graphs)
|reating/constructing expressions
| creating/constructing equations
| understanding multiple uses of variables
    and constants
| linear equations (like the arch problem)
\square matching function equation to a situation
\square connecting parts of equations to
    concrete pictures
rate of change/slope
| starting amount/y-intercept
| graphing (coordinate plane, ordered pairs)
| equivalent functions/expressions
| combining like terms
\square evaluating functions
| identifying graph of function (linear
    and quadratic)
```

```
|}\mathrm{ simplifying expressions
\square input/output tables
\square independent/dependent variables
| coefficients
- the difference between an expression
    and an equation
    quadratic equations
| comparing linear, quadratic, cubic functions
|}\mathrm{ second differences in quadratic functions
\squarealgebraic notation/function notation
polynomials
| solving for a specific value of a variable
    order of operations
|kip counting
\square area and perimeter
| exponents
perfect squares
```

